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The pioneers of concurrent 
programming

Edsger Dijkstra
• Mutual exclusion

• Cooperating 

Sequential 

Processes

• Semaphores

Per Brinch Hansen
• Concurrent Pascal

• Shared Classes

• The Solo OS

• Distributed Processes

C.A.R Hoare
• Communicating 

Sequential Processes 

(CSP)

• Monitors
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Communication is important

Time

Process 1

Process 2

Process 3

Communication/

Synchronization 

Shared memory

Message passing

VS
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Agenda of the talk

 Concurrency and communication

 Two basic examples of the two models

 Conventional wisdom for the two models

 Cache coherence and manycore processors

 Emerging paradigm shift in OS architectures

 The future perspective



Shared memory and message passing revisited in the many-core era

5
iCSC2016, Aram Santogidis, CERN

The Shared Memory model

Shared data structures
Thread

Shared

Memory

 Threads 
communicate 
implicitly with each 
other via shared 
data structures

 Synchronization 
primitives (locks, 
semaphores, etc.)
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The message passing model

Thread

Message
 Threads communicate 

explicitly with each 
other by exchanging 
messages

 Is the more 
fundamental class 
from the two

 Synchronous or 
asynchronous 
communication
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Lets see an example for each model

1. Image processing (shared memory)

2. Simple GUI (message passing)
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A shared memory-based example:
Convert from colour to grayscale

R: 204

G: 46

B: 10

(R+G+B) / 3 = 130
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A shared memory-based example:
Convert from colour to grayscale

We parallelize the computation by assigning tiles (pieces) of the image

to threads which execute the conversion in parallel.
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A message passing-based example

Many operating 

system                    

designs can be 

placed into one of 

two very rough

categories, 

depending upon 

how they…

 A GUI with 3 widgets

 Text Area

 Up scroll button

 Down scroll button

 Must be interactive 
(Immediate feedback)
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GUI example implementation:
Message passing solution

Thread 

TextArea

Thread 

UpButton

Thread 

DownButton

Many operating 

system                    

designs can be 

placed into one of 

two very rough

categories, 

depending upon 

how they…
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Conventional wisdom about the 
characteristics of the two models

1.Performance

2.Programmability
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Performance comparison

Shared Memory Message Passing

Hardware support Extensive

(All popular architectures)

Limited

(Only special purpose 

architectures)

Data transfer

Overhead

Low

(Cache block management in 

HW)

High

(Data replication)

Access/Sync

overhead

Sometimes high

(Critical section contention,

NUMA effects)

Low

(Local private memory 

access)
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Programmability comparison

Shared Memory Message Passing

Communication Implicit Explicit

Synchronization Explicit (locks etc.) Implicit (side-effect)

Interface (API) Read/write shared

data structures,

mutex primitives

Send/Receive messages,

Multicast

Hazards Race conditions, Deadlocks, 

Starvation

Deadlocks, Starvation
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Towards the manycore architectures

http://www.wired.com/images_blogs/gadgetlab/2009/10/tilera-wafer-1.jpg
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The manycore era

http://image.slideserve.com/277797/manycore-systems-design-space-n.jpg

The graph is from (presentation): “Joshi, Ajay, et al. "Building manycore processor-to-DRAM networks using 

monolithic silicon photonics." High Performance Embedded Computing (HPEC) Workshop. 2008.”

 Power limits the 
frequency increase 
of the processor. 

 Moore’s law: The 
transistors keep 
doubling every two 
years

 Replication: 
Increasing number 
of cores
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On the duality of operating systems 
structures

 Operating Systems are generally classified as:
 Message passing oriented

 Procedure-oriented (shared memory)

 Each system from one category has the other 
category.

 Neither model is inherently better than the other 
(depends on the machine architecture).

From: Lauer, Hugh C., and Roger M. Needham. "On the duality of operating 
system structures." ACM SIGOPS Operating Systems Review 13.2 (1979): 3-19.
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Non Uniform Memory Access (NUMA)

RAM Domain 0

core

P0

Last Level Cache

CPU

1

P1

CPU

2

P2

CPU

3

P3

Local 

Cache

CPU

4

P4

CPU

5

P5

RAM Domain 1

Last Level Cache

Socket 0 Socket 1

QPI Local 

Cache

Local 

Cache

Local 

Cache

Local 

Cache

Local 

Cache
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Cache coherence

Core

1

Core

0

0i:
j=i; i++;

LLC

L1

i: 0

Shared

Cache

Controller

BUS

Cache

Controller

L1

i: 0

i: 0
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Cache coherence

Core

1

Core

0

0i:
j=i; i++;

LLC

L1

i: 1

Modified

Cache

Controller

BUS

Cache

Controller

L1

i: 0

i: 0

Invalid
Bus/

InvalidateMessage
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Cache coherence

Core

1

Core

0

0i:
j=i; i++;

LLC

L1

i: 1

Shared

Cache

Controller

BUS
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Controller
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A key question

When updating shared state, which uproach is 

more expensive (in terms of latency), Shared 

memory or Message passing?
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An experiment of shared memory vs 
message passing performance

Thread

Core   Cache

Shared 

state

BUS

Hyper

Transport

CPU

in Socket Updating shared state of size 

[1,8] cachelines, relying on 

cache coherent shared memory 

on 4x4 AMD system
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An experiment of shared memory vs 
message passing performance

BUS

Hyper

Transport

CPU

in Socket

Updating shared state of size 

[1,8] cachelines, relying on 

synchronous Lightweight 

Remote Procedure Calls 

(message passing) 

S
Server, updating 

the shared state

on behalf of the 

threads
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Messages scale better than shared 
memory

Message passing

scales better than

shared memory

when increasing

the core count

and the size of

the shared state.

The plot is adapted from: Baumann, Andrew, et al. "The multikernel: a new OS architecture for scalable multicore 

systems." Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 2009.
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…some other hints that may lead to further 
fragmentation of coherency domains

http://www.racktopsystems.com/wp-content/uploads/2013/01/sql-server-fragmentation.jpg
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Increasing Heterogeneity 
of computing platforms

H
et

er
o
g

en
ei

ty

Time

Multi socket 
Manycores, GPU 
Coprocessor    
FPGA

Dual cores, 
pthreads

Single cores, 
Concurrent OS,  
Coroutines

 Message passing: 
Fundamental for 
communication in 
heterogeneous 
environment

 Shared memory: 
Hard to implement 
in a heterogeneous 
environment
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Message passing OS vs 
Shared memory OS

Barrelfish OS (Message passing)

Single arch(x86, etc.)

GPU

Linux

Kernel
Driver

App App App

Linux OS (Shared memory)

ARMx86 …

OSnode

State

replica

GPU

OSnode

State

replica

OSnode

State

replica

Async

messages

App App

Architecture dependant code

Adapted from : Baumann, Andrew, et al. "The multikernel: a new OS architecture for scalable multicore systems."

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 2009
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What to expect ?

http://tech.co/wp-content/uploads/2014/12/future-marketing.jpg
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Emerging concurrency paradigms

 Asynchronous tasks 
(Futures/Promises)

 Partitioned Global 
Address Space (PGAS) 
languages/libraries

 Actor Model

 Functional Concurrency

New high level paradigms are being developed,  based on 

shared memory and/or message passing constructs. 
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The future perspective

 Communication is the key

 For energy efficiency

 For runtime performance

 To manage software complexity

 To manage hardware heterogeneity

 Innovation in the hardware sector pressures to systems 
software engineers to develop appropriate support

 At the operating system level

 Concurrent programming frameworks level

 Communication-oriented tools and techniques to design, 
implement, analyse concurrent programs
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http://globe-views.com/dcim/dreams/surprise/surprise-05.jpg
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