
Shared memory and message passing revisited in the many-core era

1
iCSC2016, Aram Santogidis, CERN

Shared memory and Message
passing revisited in the many-core

era

Aram Santogidis

CERN

Inverted CERN School of Computing, 29 February – 2 March 2016

Shared memory and message passing revisited in the many-core era

2
iCSC2016, Aram Santogidis, CERN

The pioneers of concurrent
programming

Edsger Dijkstra
• Mutual exclusion

• Cooperating

Sequential

Processes

• Semaphores

Per Brinch Hansen
• Concurrent Pascal

• Shared Classes

• The Solo OS

• Distributed Processes

C.A.R Hoare
• Communicating

Sequential Processes

(CSP)

• Monitors

Shared memory and message passing revisited in the many-core era

3
iCSC2016, Aram Santogidis, CERN

Communication is important

Time

Process 1

Process 2

Process 3

Communication/

Synchronization

Shared memory

Message passing

VS

Shared memory and message passing revisited in the many-core era

4
iCSC2016, Aram Santogidis, CERN

Agenda of the talk

 Concurrency and communication

 Two basic examples of the two models

 Conventional wisdom for the two models

 Cache coherence and manycore processors

 Emerging paradigm shift in OS architectures

 The future perspective

Shared memory and message passing revisited in the many-core era

5
iCSC2016, Aram Santogidis, CERN

The Shared Memory model

Shared data structures
Thread

Shared

Memory

 Threads
communicate
implicitly with each
other via shared
data structures

 Synchronization
primitives (locks,
semaphores, etc.)

Shared memory and message passing revisited in the many-core era

6
iCSC2016, Aram Santogidis, CERN

The message passing model

Thread

Message
 Threads communicate

explicitly with each
other by exchanging
messages

 Is the more
fundamental class
from the two

 Synchronous or
asynchronous
communication

Shared memory and message passing revisited in the many-core era

7
iCSC2016, Aram Santogidis, CERN

Lets see an example for each model

1. Image processing (shared memory)

2. Simple GUI (message passing)

Shared memory and message passing revisited in the many-core era

8
iCSC2016, Aram Santogidis, CERN

A shared memory-based example:
Convert from colour to grayscale

R: 204

G: 46

B: 10

(R+G+B) / 3 = 130

Shared memory and message passing revisited in the many-core era

9
iCSC2016, Aram Santogidis, CERN

A shared memory-based example:
Convert from colour to grayscale

We parallelize the computation by assigning tiles (pieces) of the image

to threads which execute the conversion in parallel.

Shared memory and message passing revisited in the many-core era

10
iCSC2016, Aram Santogidis, CERN

A message passing-based example

Many operating

system

designs can be

placed into one of

two very rough

categories,

depending upon

how they…

 A GUI with 3 widgets

 Text Area

 Up scroll button

 Down scroll button

 Must be interactive
(Immediate feedback)

Shared memory and message passing revisited in the many-core era

11
iCSC2016, Aram Santogidis, CERN

GUI example implementation:
Message passing solution

Thread

TextArea

Thread

UpButton

Thread

DownButton

Many operating

system

designs can be

placed into one of

two very rough

categories,

depending upon

how they…

Shared memory and message passing revisited in the many-core era

12
iCSC2016, Aram Santogidis, CERN

Conventional wisdom about the
characteristics of the two models

1.Performance

2.Programmability

Shared memory and message passing revisited in the many-core era

13
iCSC2016, Aram Santogidis, CERN

Performance comparison

Shared Memory Message Passing

Hardware support Extensive

(All popular architectures)

Limited

(Only special purpose

architectures)

Data transfer

Overhead

Low

(Cache block management in

HW)

High

(Data replication)

Access/Sync

overhead

Sometimes high

(Critical section contention,

NUMA effects)

Low

(Local private memory

access)

Shared memory and message passing revisited in the many-core era

14
iCSC2016, Aram Santogidis, CERN

Programmability comparison

Shared Memory Message Passing

Communication Implicit Explicit

Synchronization Explicit (locks etc.) Implicit (side-effect)

Interface (API) Read/write shared

data structures,

mutex primitives

Send/Receive messages,

Multicast

Hazards Race conditions, Deadlocks,

Starvation

Deadlocks, Starvation

Shared memory and message passing revisited in the many-core era

15
iCSC2016, Aram Santogidis, CERN

Towards the manycore architectures

http://www.wired.com/images_blogs/gadgetlab/2009/10/tilera-wafer-1.jpg

Shared memory and message passing revisited in the many-core era

16
iCSC2016, Aram Santogidis, CERN

The manycore era

http://image.slideserve.com/277797/manycore-systems-design-space-n.jpg

The graph is from (presentation): “Joshi, Ajay, et al. "Building manycore processor-to-DRAM networks using

monolithic silicon photonics." High Performance Embedded Computing (HPEC) Workshop. 2008.”

 Power limits the
frequency increase
of the processor.

 Moore’s law: The
transistors keep
doubling every two
years

 Replication:
Increasing number
of cores

Shared memory and message passing revisited in the many-core era

17
iCSC2016, Aram Santogidis, CERN

On the duality of operating systems
structures

 Operating Systems are generally classified as:
 Message passing oriented

 Procedure-oriented (shared memory)

 Each system from one category has the other
category.

 Neither model is inherently better than the other
(depends on the machine architecture).

From: Lauer, Hugh C., and Roger M. Needham. "On the duality of operating
system structures." ACM SIGOPS Operating Systems Review 13.2 (1979): 3-19.

Shared memory and message passing revisited in the many-core era

18
iCSC2016, Aram Santogidis, CERN

Non Uniform Memory Access (NUMA)

RAM Domain 0

core

P0

Last Level Cache

CPU

1

P1

CPU

2

P2

CPU

3

P3

Local

Cache

CPU

4

P4

CPU

5

P5

RAM Domain 1

Last Level Cache

Socket 0 Socket 1

QPI Local

Cache

Local

Cache

Local

Cache

Local

Cache

Local

Cache

Shared memory and message passing revisited in the many-core era

19
iCSC2016, Aram Santogidis, CERN

Cache coherence

Core

1

Core

0

0i:
j=i; i++;

LLC

L1

i: 0

Shared

Cache

Controller

BUS

Cache

Controller

L1

i: 0

i: 0

Shared memory and message passing revisited in the many-core era

20
iCSC2016, Aram Santogidis, CERN

Cache coherence

Core

1

Core

0

0i:
j=i; i++;

LLC

L1

i: 1

Modified

Cache

Controller

BUS

Cache

Controller

L1

i: 0

i: 0

Invalid
Bus/

InvalidateMessage

Shared memory and message passing revisited in the many-core era

21
iCSC2016, Aram Santogidis, CERN

Cache coherence

Core

1

Core

0

0i:
j=i; i++;

LLC

L1

i: 1

Shared

Cache

Controller

BUS

Cache

Controller

L1

i: 1

i: 1

Bus Read

Shared memory and message passing revisited in the many-core era

22
iCSC2016, Aram Santogidis, CERN

A key question

When updating shared state, which uproach is

more expensive (in terms of latency), Shared

memory or Message passing?

Shared memory and message passing revisited in the many-core era

23
iCSC2016, Aram Santogidis, CERN

An experiment of shared memory vs
message passing performance

Thread

Core Cache

Shared

state

BUS

Hyper

Transport

CPU

in Socket Updating shared state of size

[1,8] cachelines, relying on

cache coherent shared memory

on 4x4 AMD system

Shared memory and message passing revisited in the many-core era

24
iCSC2016, Aram Santogidis, CERN

An experiment of shared memory vs
message passing performance

BUS

Hyper

Transport

CPU

in Socket

Updating shared state of size

[1,8] cachelines, relying on

synchronous Lightweight

Remote Procedure Calls

(message passing)

S
Server, updating

the shared state

on behalf of the

threads

Shared memory and message passing revisited in the many-core era

25
iCSC2016, Aram Santogidis, CERN

Messages scale better than shared
memory

Message passing

scales better than

shared memory

when increasing

the core count

and the size of

the shared state.

The plot is adapted from: Baumann, Andrew, et al. "The multikernel: a new OS architecture for scalable multicore

systems." Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 2009.

Shared memory and message passing revisited in the many-core era

26
iCSC2016, Aram Santogidis, CERN

…some other hints that may lead to further
fragmentation of coherency domains

http://www.racktopsystems.com/wp-content/uploads/2013/01/sql-server-fragmentation.jpg

Shared memory and message passing revisited in the many-core era

27
iCSC2016, Aram Santogidis, CERN

Increasing Heterogeneity
of computing platforms

H
et

er
o
g

en
ei

ty

Time

Multi socket
Manycores, GPU
Coprocessor
FPGA

Dual cores,
pthreads

Single cores,
Concurrent OS,
Coroutines

 Message passing:
Fundamental for
communication in
heterogeneous
environment

 Shared memory:
Hard to implement
in a heterogeneous
environment

Shared memory and message passing revisited in the many-core era

28
iCSC2016, Aram Santogidis, CERN

Message passing OS vs
Shared memory OS

Barrelfish OS (Message passing)

Single arch(x86, etc.)

GPU

Linux

Kernel
Driver

App App App

Linux OS (Shared memory)

ARMx86 …

OSnode

State

replica

GPU

OSnode

State

replica

OSnode

State

replica

Async

messages

App App

Architecture dependant code

Adapted from : Baumann, Andrew, et al. "The multikernel: a new OS architecture for scalable multicore systems."

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 2009

Shared memory and message passing revisited in the many-core era

29
iCSC2016, Aram Santogidis, CERN

What to expect ?

http://tech.co/wp-content/uploads/2014/12/future-marketing.jpg

Shared memory and message passing revisited in the many-core era

30
iCSC2016, Aram Santogidis, CERN

Emerging concurrency paradigms

 Asynchronous tasks
(Futures/Promises)

 Partitioned Global
Address Space (PGAS)
languages/libraries

 Actor Model

 Functional Concurrency

New high level paradigms are being developed, based on

shared memory and/or message passing constructs.

Shared memory and message passing revisited in the many-core era

31
iCSC2016, Aram Santogidis, CERN

The future perspective

 Communication is the key

 For energy efficiency

 For runtime performance

 To manage software complexity

 To manage hardware heterogeneity

 Innovation in the hardware sector pressures to systems
software engineers to develop appropriate support

 At the operating system level

 Concurrent programming frameworks level

 Communication-oriented tools and techniques to design,
implement, analyse concurrent programs

Shared memory and message passing revisited in the many-core era

32
iCSC2016, Aram Santogidis, CERN

http://globe-views.com/dcim/dreams/surprise/surprise-05.jpg

Shared memory and message passing revisited in the many-core era

33
iCSC2016, Aram Santogidis, CERN

References

 Baumann, Andrew, et al. "The multikernel: a new OS architecture for scalable multicore
systems." Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009.

 Gerber, et al. "Not Your Parents' Physical Address Space", Proceedings ot the 15th Workshop
on Hot Topics in Operating Systems (HotOS 15)

 A Primer on Memory Consistency and Cache Coherence Daniel J. Sorin, Mark D. Hill, and
David A. Wood

 Martin, Milo MK, Mark D. Hill, and Daniel J. Sorin. "Why on-chip cache coherence is here to
stay." Communications of the ACM 55.7 (2012): 78-89.

 Hansen, Per Brinch. "The invention of concurrent programming." The origin of concurrent
programming. Springer New York, 2002. 3-61.

 Butcher, Paul. Seven Concurrency Models in Seven Weeks: When Threads Unravel. Pragmatic
Bookshelf, 2014.

 Hoare, Charles Antony Richard. "Communicating sequential processes."Communications of the
ACM 21.8 (1978): 666-677.

Shared memory and message passing revisited in the many-core era

34
iCSC2016, Aram Santogidis, CERN

Thank you for your attention

Many thanks to my supporters and mentors for this presentation:

Sebastian Lopienski, Sebastian.Lopienski@cern.ch, CERN

Andreas Joachim Peters, Andreas.Joachim.Peters@cern.ch, CERN

Andreas Hirstius, andreas.hirstius@intel.com, Intel GmbH

Spyros Lalis, lalis@inf.uth.gr, University of Thessaly

This work is support by the Marie Curie Early European Industrial

Doctorates Fellowship of the European Community’s Seventh Framework

Programme under contract number (PITN-GA-2012-316596-ICE-DIP).

